Identification of Garlic Genotypes for Resistant Sources against Purple Blotch Disease

K. N. Vijaykumar a*, Shripad Kulkarni a, T. R. Shashidhar b, S. M. Hiremath b, Vijay Mahajan c, Anil Khar d, D. N. Kambrekar e and P. V. Patil a

a Department of Plant Pathology, University of Agricultural Sciences, Dharwad, Karnataka, India.

b Department of Horticulture, University of Agricultural Sciences, Dharwad, Karnataka, India.

c ICAR-Directorate of Onion and Garlic, Raigurunagar, Pune, India.

d ICAR-Indian Agricultural Research Institute, New Delhi, India.

e Department of Agricultural Entomology, University of Agricultural Sciences, Dharwad, Karnataka, India.

Authors’ contributions

This work was carried out in collaboration among all authors. Author KNV carried out the research work and wrote the protocol. Author SK designed the study. Author TRS supervised the work. Author SMH managed the literature searches. Authors VM and AK provided the genotypes for evaluation. Authors PVP and DNK wrote the first draft of manuscript. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJECC/2022/v12i121458

Original Research Article

ABSTRACT

Garlic is an herbaceous annual bulbous plant in the family Amaryllidaceae grown for its pungent and edible bulb. Among the various biotic factors hindering production and productivity, purple blotch plays a predominant role in changing the crops morpho-physiological characters, thus deteriorating the metabolic activity in turn affecting the yield considerably. Fungicides have been

*Corresponding author: E-mail: vijaykn549@gmail.com;
recommended for the control of the disease, however use of fungicides is expensive and not eco-friendly. The best approach to control the disease is by using resistant genotypes. Hence, 37 genotypes were field screened at AINRPoG (All India Network Research Project on Onion and Garlic), MARS (Main Agricultural Research Station), Dharwad against purple blotch disease under artificial epiphytotic conditions during Kharif in year 2019 to identify the resistant sources. The results revealed that twenty genotypes were found to be resistant (1-10%) and five genotypes were immune (0%) however, ten genotypes were found moderately resistant (11-20%) in reaction. The remaining two genotypes viz., HRG Local and DOGR409 were found moderately susceptible (21-40%) with a maximum grade of 3 on (0-5) scale. None of the genotypes showed susceptible or highly susceptible reactions to purple blotch. Breeders can make use of these identified resistant lines in developing high yield purple blotch disease resistant varieties.

Keywords: Genotypes; garlic; artificial screening; Alternaria porri; disease reaction.

1. INTRODUCTION

“Garlic (Allium sativum L.) is one of the most popular spice crops having higher nutritive value than other bulb crops. All parts of the garlic plant are edible but the fresh leaves and the dried cloves are the parts mostly consumed” [1]. “It is vegetatively propagated by cloves or bulbils. Some cultivars are reported to produce flowers but with no seed set. Garlic cultivars differ in maturity, bulb size, clove size and number, scale colour, bolting and flowering habits. However, it encounters a number of diseases that attack the crop during its growth and development resulting in low yield thus causing economic loss. Among several diseases that affect garlic, purple blotch caused by Alternaria porri (Ellis) Ciferri has been emerging as a serious disease affecting both foliage and bulb development. Since, it is a foliar pathogen it alters the metabolic processes by decreasing the photosynthetic activity. A foliar infection of upto 90% has been reported in susceptible cultivars of garlic grown. Purple blotch initially starts as numerous tiny, white, circular or irregular spots. These spots gradually increase in size, become oval-shaped or irregular and white coloured spot eventually changing to violet colour. Later stages of development show the central portion of the spots changing to purple, surrounded by a pale yellow orange to salmon band beyond which is a pale green zone. The dark purple colour is the most distinctive symptom of the disease. A distinct yellowing usually extends from both ends of the spots, often reaching the tips and bases of the leaves” [2]. Complete damage to the leaf tissues is observed at the time of bulb maturity followed by blackening of scales resulting in reduced shelf life of the bulb [3]. A significant reduction in bulb yield (25-60%) due to drying of leaves has been reported in garlic [4].

Overall the purple blotch in garlic has been reported as economically important disease in Gujarat [5], Maharashtra [6], Andhra Pradesh [7], Haryana, Karnataka [8], Odisha [9] and Himachal Pradesh [10]. Host plant resistance is an effective, economic and environmentally safe component in an integrated approach. To overcome the breakdown of resistance, an alternate option is to cultivate varieties with durable resistance. Therefore, an attempt was made to identify resistant sources with a view to mitigate loss in bulb yield.

2. MATERIALS AND METHODS

A total of 37 garlic genotypes collected from ICAR-DOGR (Directorate of Onion and Garlic), Rajgurunagar, Pune and ICAR-IARI, New Delhi along with local genotypes (DWG1, HRG Local and Gadag Local) as commercial check were subjected to a field screening during Kharif 2019 against purple blotch at AINRPoG (All India Network Research Project on Onion and Garlic), MARS (Main Agricultural Research Station), Dharwad. All the genotypes were sown in two rows of two meter length with a plant spacing of 30 cm × 10 cm (row to row and plant to plant) in non-replicated augmented design. All the recommended agronomic practices were followed, except disease management practices. Inoculum of Alternaria porri (2×10^5 spores/ml) was uniformly sprayed during evening hours at 30 days after sowing to create uniform disease pressure throughout the field. The disease severity was recorded at 90 days after sowing using a scale of 0-5 [8] by randomly selecting ten plants in each genotype. Based on their disease severity, genotypes were categorized into immune (0%), resistant (1-10%), moderately resistant (11-20%), moderately susceptible (21-40%), susceptible (41-75%) and highly susceptible (75-100%).
Chart 1. Disease scoring scale (0-5 grade) for purple blotch of garlic [8]

<table>
<thead>
<tr>
<th>Disease score</th>
<th>Symptom</th>
<th>Leaf area infection (%)</th>
<th>Disease reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No disease symptoms</td>
<td>0</td>
<td>Immune</td>
</tr>
<tr>
<td>1</td>
<td>A few spots towards tip covering leaf area</td>
<td>10</td>
<td>Resistant</td>
</tr>
<tr>
<td>2</td>
<td>Several dark purplish brown patches covering leaf area</td>
<td>11-20</td>
<td>Moderately resistant</td>
</tr>
<tr>
<td>3</td>
<td>Several patches with pale outer zone covering leaf area</td>
<td>21-40</td>
<td>Moderately susceptible</td>
</tr>
<tr>
<td>4</td>
<td>Yellow streaks covering leaf area</td>
<td>41-75</td>
<td>Susceptible</td>
</tr>
<tr>
<td>5</td>
<td>Complete drying of the leaves or breaking of leaves from centre</td>
<td>75-100</td>
<td>Highly susceptible</td>
</tr>
</tbody>
</table>

3. RESULTS AND DISCUSSION

Thirty seven genotypes were grouped into different reaction types based on the results obtained from the study (Table 1). Among 37 genotypes, five genotypes (DOGR81W, DOGR150, DOGR517, DOGR534 and DOGR543) showed immune reaction whereas, 20 genotypes (DOGR51, DOGR75, DOGR102, DOGR113, DOGR119, DOGR181, DOGR325, DOGR353, DOGR389, DOGR426, DOGR548, DOGR569, DOGR604 and DOGR744) showed resistant reaction and 10 genotypes (Godavari, GG2, GG4, G41, DWG1, DOGR185, DOGR228, DOGR329, DOGR440 and DOGR756) showed moderately resistant reaction, the remaining two genotypes (DOGR409 and HRG Local) were found moderately susceptible to purple blotch of garlic. However, none of the genotypes showed susceptible or highly susceptible reaction to purple blotch.

“Management of the disease through host plant resistance has been the best choice in all crop improvement programmes. Utilization of resistant cultivars in farming system is the most simple, effective and economical method in the management of plant diseases. Besides this, the resistant cultivars conserve the natural resource and reduce the cost, time and energy when compared to the other methods of disease management” [11].

Table 1. Resistance of garlic genotypes to purple blotch disease during Kharif 2019

<table>
<thead>
<tr>
<th>Disease grade</th>
<th>Per cent leaf infection</th>
<th>Genotypes</th>
<th>Disease reaction</th>
<th>No. of Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>DOGR81W, DOGR150, DOGR517, DOGR534 and DOGR543</td>
<td>Immune</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1-10</td>
<td>G50, G282, Bhima Omkar, Bhima Purple, Gadag Local, Phule Baswant, DOGR51, DOGR75, DOGR102, DOGR113, DOGR119, DOGR181, DOGR325, DOGR353, DOGR389, DOGR426, DOGR548, DOGR569, DOGR604 and DOGR744</td>
<td>Resistant</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>10-20</td>
<td>G41, GG2, GG4, Godavari, DWG1, DOGR185, DOGR228, DOGR329, DOGR440 and DOGR756</td>
<td>Moderately Resistant</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>21-40</td>
<td>HRG Local and DOGR409</td>
<td>Moderately susceptible</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>40-75</td>
<td>-</td>
<td>Susceptible</td>
<td>Nil</td>
</tr>
<tr>
<td>5</td>
<td>More than 75</td>
<td>-</td>
<td>Highly susceptible</td>
<td>Nil</td>
</tr>
</tbody>
</table>
“The results are in agreement with previous reports which demonstrated that, only a few lines are immune while the majority have resistance to purple blotch under natural infestation in open field condition” [12]. Sugha et al. [13] evaluated “94 onion genotypes under natural conditions and designated just two varieties, IC39178 and IC49371 as resistant to purple blotch”. In the same context, Behera et al. [14] observed “VG-18 cultivar as resistant and another 12 lines as moderately resistant to purple blotch”. The present findings are in line with Agarwal and Tiwari [15], Nandini et al. [16] and Kowser et al. [17] who “screened different garlic genotypes against purple blotch and they noted that per cent disease index was negatively and significantly correlated with the bulb yield and keeping quality. The field screening of different genotypes showed variable responses to purple blotch, further field evaluation in multi-location hotspot areas for purple blotch is required in order to determine their efficiency as pre-breeding lines”.

4. CONCLUSION

The results of screening of garlic genotypes against purple blotch reveal that, out of 37 genotypes screened under artificial epiphytotic condition, five genotypes showed immune reaction and twenty genotypes showed resistant reaction whereas, ten genotypes showed moderately resistant and the remaining two genotypes showed moderate susceptibility while, none of the genotypes showed a susceptible and highly susceptible reaction. So, farmers can cultivate those immune and resistant genotypes in place of local cultivars (DWG1, HRG Local and Gadag local) in the management of purple blotch disease to get higher bulb yield.

ACKNOWLEDGEMENTS

The authors are grateful to the members of AINRPOG and AICRP on Potato, University of Agricultural Sciences, Dharwad for providing the necessary facilities and timely assistance in the conduct of experiment.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

15. Agarwal A, Tiwari RS, Evaluation of garlic (Allium sativum) genotypes for yield and...
